The EuroHPC Joint Undertaking (hereinafter “EuroHPC JU”), will contribute to the ambition of value creation in the Union with the overall mission to develop, deploy, extend and maintain in the Union an integrated world class supercomputing and quantum computing infrastructure and to develop and support a highly competitive and innovative High Performance Computing (HPC) ecosystem, extreme scale, power-efficient and highly resilient HPC and data technologies.
High-pressure electrolysers should be compatible with direct injection into chemical industry and gas networks both onshore and offshore as the avoidance of mechanical compressors are of crucial importance to reduce the LCOH and improve the availability of systems. The scope of this project is to develop the next generation of water electrolysers (PEMEL or AEMEL) operating below 150 ºC for pressurised hydrogen production at the pressure of minimum 50 bar for AEL and AEMEL and 80 bar for PEMEL further advancing innovations developed in projects like NEPTUNE and PRETZEL.
Novel stack concepts should be designed, whilst innovations in BoP (e.g., integration of innovative compression solutions with electrolyser stacks), advanced materials with longer term durability and components (membranes/diaphragms, porous transport layers, bipolar plates, catalysts) developed and integrated into a short-stack prototype.
Targeted prototype scale and cell size should be appropriate for targeted application but a scale of minimum 50 kW for AEL and PEMEL and 25 kW for AEMEL, including larger cell areas than SoA, should be addressed.
Proposals should investigate the high-pressure effects on the overall electrolysis process, both with respect to the effect of increased gas solubility, bubble-formation and the effect on electrode overpotentials and ohmic losses as well as the associated increase in gas cross-over at elevated pressures.
Optimal stack and cell design in terms of structure and geometry (e.g. spacing distances within the cell) should be within the scope of proposals.
Research on corrosion effects on the cells and/or lifetime prediction model and mitigation strategies should be conducted in order to maintain lifetime and degradation.
Collaboration mechanism with JRC.