The Clean Hydrogen Joint Undertaking or Clean Hydrogen Partnership is a unique public-private partnership supporting research and innovation (R&I) activities in hydrogen technologies in Europe. It builds upon the success of its predecessor, the Fuel Cells and Hydrogen Joint Undertaking.
The research scope involves acquisition of fundamental knowledge, development of modelling and analytical tools, optimisation of advanced fuel injection concepts and/or combustion staging strategies to increase the robustness of operation and the fuel flexibility of gas turbines, while conserving their cycle efficiency and emissions performance.
It is of crucial importance to seek the widest generality and applicability of the results. This objective can be conveniently pursued by the adoption of canonical turbulent premixed flames configurations (e.g. Bunsen, bluff-body, transverse jets or swirl-stabilised) for the proposed work.
Proposals should:
The above-mentioned two points can be achieved by exploiting a combination of first-principle numerical simulations, to minimize the modelling assumption, and advanced optical measurements, to obtain an accurate characterization of the flames across the pressure range investigated.
Although not strictly required to develop fuel-flexible combustion system layouts and innovative solutions, the involvement of a Gas Turbine Original Equipment Manufacturer (GT OEM) in the relevant research activities should be considered of crucial importance to significantly strengthen the industrial relevance of the research and its applicability and transferability to gas turbine applications.
The numerical and experimental methodologies should be selected to achieve a clear analytical differentiation between concurrently occurring and tightly interconnected processes, i.e. the increase in bulk Reynolds number and thermo-diffusive instabilities with pressure with the variation in chemical reactivity. In order to ensure that the principal rate-controlling processes and their trends are correctly and accurately captured at relevant conditions, laboratory experiments and numerical modelling efforts should target a pressure range covering a significant portion of the range relevant in gas turbine operation. Therefore, as a minimum requirement, the pressure range comprised between 1 and 10 bar should be investigated using state-of-the-art numerical modelling and experimental measuring techniques, i.e. featuring detailed optical diagnostics of the flame geometrical characteristics, of its stabilisation, structure and response to acoustic forcing.
Expected EU contribution: €4.000.000
An additional obligation regarding subcontracting has been introduced, namely that subcontracted work may only be performed in target countries set out in the call conditions.
The beneficiaries must ensure that the subcontracted work is performed in the countries set out in the call conditions.
The target countries are all Member States of the European Union and all Associated Countries.
Email: info@clean-hydrogen.europa.eu
Phone number: +32 22218148
Postal address: Avenue de la Toison d’Or 56-60, 1060 Brussels, Belgium