The Clean Hydrogen Joint Undertaking or Clean Hydrogen Partnership is a unique public-private partnership supporting research and innovation (R&I) activities in hydrogen technologies in Europe. It builds upon the success of its predecessor, the Fuel Cells and Hydrogen Joint Undertaking.
Electrolysers are complex systems in which kinetics, electrochemistry and thermophysics drive performance degradation phenomena.
Durability of electrolyser stacks is affected by various degradation mechanisms occurring at material, interface, cell and stack levels: for instance, high temperature solid oxide cells (SOCs) and proton ceramic cells (PCCs) are susceptible to impurity poisoning, Ni migration and loss of percolation, oxide scale growth on interconnect, mechanical fracture of seals, delamination of electrodes, thermal runaway etc. Low temperature electrolysers, such as PEMEL and AEL are facing ionomer degradation, passivation of porous transport layers, catalyst dissolution and Ostwald ripening, corrosion of carbon support, bipolar plates, degradation of sealing materials, etc. The coupling of these multi-physics fields, occurring simultaneously at various length scales (atomic, nano, micro, macro), makes it challenging to parameterise individual degradation mechanism, and even more challenging, the effects of their combined occurrence. This is even more complicated when flexible operation is required (in part due to the lack of established testing protocols). The project will also build on the results from on-going and newly supported fuel cell and electrolyser projects, as well as projects addressing sustainability. Long term degradation studies (at least 10,000 hours) should be firstly carried out on stacks (new or used) representative of commercial or pre-commercial technologies for PEMEL/SOEL/AEL stacks and in the second stage, also include stack concepts developed jointly between academic and industrial partners for AEMEL/ PCCEL technologies. Study of ageing mechanisms should address degradation due to evolution of materials, interfaces and microstructures when the cells/stacks are operated under real conditions (e.g. as a function of temperature, load, pressure, overvoltage, etc.), as well as degradation mechanisms associated with exposure to impurities e.g. from airborne contaminants and transient operation and upon dynamic operations (e.g. coupling with RES). The work should provide guidelines for defining new solutions at the cell and/or stack level to increase lifetime, as well as optimal operations of the cells/stacks. The new solutions should be demonstrated at short stack level. Furthermore, the emphasis should be given on defining predictive modelling of state-of-health / state-of-life for given operation, and on establishing operation solutions diminishing degradation.
The following activities are within the scope of this topic:
EU Contribution per project: € 10,000,000
Number of proposals: 1
Consortia should gather comprehensive expertise and experience from the EU research community to ensure broad impact by addressing the items above. Partners should have proven expertise and the required means of materials degradation, modelling, characterisation, and testing. Industrial guidance is considered essential, for instance through an industrial advisory board.
At least one partner in the consortium must be a member of either Hydrogen Europe or Hydrogen Europe Research.
Email: info@clean-hydrogen.europa.eu
Phone number: +32 22218148
Postal address: Avenue de la Toison d’Or 56-60, 1060 Brussels, Belgium
(Publish Date: 02/03/2023-for internal use only)